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We investigate effects of pseudospin population imbalance on Mott phases in one-dimensional trapped
two-component atomic Fermi gases loaded on optical lattices based on the repulsive Hubbard model in
harmonic traps. By using the density-matrix renormalization-group method, we numerically calculate density
profiles of each component and clarify the pseudospin magnetism. Consequently, we find that all the features
from weakly imbalance to fully polarized cases are well described by S=1 /2 antiferromagnetic Heisenberg
chain under magnetic field. These results indicate that the Mott phases offer experimental stages for studying
various interacting spin systems.
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Recently, effects of population imbalance on interacting
fermion systems have been intensively studied in various
fields such as superconductors, atomic Fermi gases, and
quantum chromodynamics.1 The main reason is recent dras-
tic developments of experimental techniques in supercon-
ductors and atomic Fermi gases.2 In particular, in atomic
Fermi gases, one can arbitrarily tune the population imbal-
ance, so that not only the so-called Fulde-Ferrell and Larkin-
Ovchinikov �FFLO� phase3 with a spatially modulated super-
fluid order parameter but also the Chandrasekhar-Clogston
limit4 in a large imbalance has been explored.

In cold atomic gases, besides the tunable imbalance, the
optical lattice and the variable interaction are like magic arts
for condensed-matter physicists.5 The optically created peri-
odical potential flexibly builds up various playgrounds. The
interaction tuning associated with the Feshbach resonance
provides a chance to systematically study strongly correlated
behaviors.5 In this paper, we therefore study the population
imbalance effect on the strongly correlated lattice stage,
which is now one of the most intensive but controversial
issues in solid-state matters.6

The atomic gas experiments usually employ the harmonic
trap produced by magnetic field and/or optical method to
avoid the escape of atoms. The harmonic trap brings about
spatial inhomogeneities, which complicate the observation of
the quantum phase transition.7 Moreover, the fact that the
most convenient probe is atomic density profile has limited
the exploration of novel phases.7 For example, the sign re-
versal in the FFLO superfluid order-parameter cannot be di-
rectly recognized by the density profile. Thus, the experi-
mental confirmation of FFLO still remains controversial in
the trapped system.7,8

On the other hand, the Mott insulator core accompanied
by metallic wings predicted in the trapped optical lattice in
the presence of the repulsive interaction9 can be easily con-
firmed by the current probe like the density profile. These
inhomogeneous phases have been proposed by quantum
Monte Carlo studies9 as well as the exact diagonalization

method.10 So far, theoretical studies of the Mott core phase
have been restricted to a particular case, “balanced popula-
tion.” In this paper, we focus on the Mott phase in the pres-
ence of population imbalance. Using the density-matrix
renormalization-group �DMRG� method,11,12 we investigate
pseudospin structures by calculating density profiles of each
component in the Mott phase. Since the Mott core and its
pseudospin structures are directly observable, their explora-
tion will be a suitable next challenge in cold-atom physics.

Inside the Mott core, the on-site atomic density shows the
unit filling and the density compressibility vanishes.9 As a
result, the pseudospin degree of freedom solely survives, so
that the core region is well described by S=1 /2 Heisenberg
�local pseudospin interacting� model for the two-component
atomic Fermi gas. Moreover, we expect that a population
imbalance has a role of the magnetic field in the Heisenberg
model given by

Heff = J�
�i,j�

Si · S j − g�BHext�
i

Si
z, �1�

where the fictitious magnetic field Hext is varied by the mag-
nitude of the population imbalance in the original system. In
this paper, we explicitly confirm that the spin structure in the
Mott core region is really described by the effective Hamil-
tonian �1� using the DMRG method.11,12 Namely, we suggest
that the Mott core can be employed as a model system to
widely study the magnetism in interacting spin models. One
of the advantages using the equivalence is that one can easily
reach a very-high-field range. Moreover, although this paper
concentrates on the one-dimensional and two-component
Fermi atom system as a trial problem, higher-dimensional,
frustrated, and large S cases are also possible to study.

The starting model Hamiltonian9,10 describing trapped
two-component Fermi atoms under the one-dimensional
�1D� strong optical lattice is given by the 1D Hubbard model
with the harmonic trap,
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HHubbard = − t �
�i,j�,�

�ci�
† cj� + H.c.� + U�

i

ni↑ni↓

+ V� 2

N − 1
�2

�
i,�

�i −
N + 1

2
�2

ni�, �2�

where the summation for the pseudospin � is taken over two
components assigned as �=↑ and ↓. ci�

† is the creation op-
erator of a Fermi atom with the pseudospin � at the ith lattice
state and ni��	ci�

† ci�� is the site density one for the same
pseudospin. In the first term of Hamiltonian �2�, t describes
the nearest-neighbor hopping parameter and the summation
�i , j� is taken over the nearest-neighbor sites, and U ��0� in
the second term is the on-site repulsive interaction. The last
term in Eq. �2� describes a harmonic trap potential, where V
is the potential height at the edge sites. N is the total number
of lattice sites and NF is that of fermions with �=↑ and
↓ �NF	N↑+N↓�. Throughout this paper, an atom component
with �=↑ is always a major one. As a main numerical
method, we employ the DMRG to explore the ground state
of model �2�. At first, the number of states kept �m� in
DMRG is selected by a comparison of the ground-state en-
ergy with the exact diagonalization method for small size
�N=20�. In larger sizes, we select m which gives no signifi-
cant difference by increasing m further. For N=60�120� and
180�240� in the Hubbard model, we confirm that m=100 and
m=300 are enough, respectively. In addition, for N=60 in
the Heisenberg model, m=100 is selected due to the same
reason.

Let us show DMRG results of model �2�. First, we show
atomic density profiles in the case of the perfect polarization

P	�N↑−N↓� /N=1� in Fig. 1. When V / t�5, we find the
insulating core in the center of the trap, over which the unit
filling is spread. Since the compressibility is zero and the
polarization is perfect in this insulating core, it is regarded as
a ferromagnetic insulator. We note that this insulating state
originates from only the Pauli exclusion principle and differs
from the Mott state caused by a repulsive interaction be-
tween fermions. We also point out that this ferromagnetic
insulating core can be described by the antiferromagnetic
Heisenberg model �1� in the presence of a sufficiently strong
magnetic field.

Next, let us study cases in which the minority-spin com-

ponent slightly increases from zero �the complete polarized
one�. We examine density profiles in two typical situations,
i.e., those in the presence of relatively weak and strong
repulsive interactions. The upper and the lower panels in
Fig. 2 are V / t dependences of density profiles of the former
�U / t=4� and the latter �U / t=8� cases, respectively. As seen
in Fig. 2, the unity core is broken in the central region about
above V / t=10 in the weak-interaction case 
Fig. 2�a��, while
its flat plateau feature is still kept up to V / t=20 
Fig. 2�d�� in
the strong-interaction one. Here, we note that the breakdown
of the unity core is also observed above V / t=20 in the
strong-interaction �U / t=8� case. Namely, the V-dependent
changes in the density profiles are qualitatively equivalent in
both cases. On the other hand, we find from these results that
the unity core is the so-called Mott state since its phase sta-
bility actually depends on the interaction strength.

Now, let us concentrate on pseudospin structures inside
the Mott phase as seen in Figs. 2�e� and 2�f�. Before the Mott
phase destruction occurs, we find that the minority makes a
profile like Wigner lattice inside the Mott core. The number
of the peak in the minority profile is the same as that of the
minority atoms as seen in Figs. 2�e� and 2�f�, where the
number is just four 
see Fig. 3�a� for another case in which
the number is 10�. These Wigner-lattice-type profiles can be
explained by the antiferromagnetic Heisenberg model �1� in
finite but strong magnetic field. The effective model �1� then
predicts the spin-density wave �SDW� state whose periodic-
ity is characterized by 2kF=��1− m̄�, where m̄ is the magne-
tization normalized by the saturated magnetization and kF is
the Fermi wave vector in the equivalent spinless fermion
system.13 In the present imbalance system, since the m̄ is a
controllable parameter via the population imbalance, the pe-
riodicity is given by
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FIG. 1. �Color online� �a� The trap-potential strength V depen-
dence of the particle density profile ntot�i�
=n↑�i�� for a completely
polarized fermionic gas with slice pictures for two cases �b� V / t
=4 and �c� 10.
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FIG. 2. �Color online� The trap-potential strength V depen-
dences of the particle density profiles ntot�i�
=n↑�i�+n↓�i�� for N↑
=66 and N↓=4 in �a� U / t=4 with two slice pictures at �b� V / t
=12 and �c� 20 and �d� U / t=8 with the same ones at �e� V / t=12
and �f� 20.
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2kF = ��1 − �N↑
Mott − N↓

Mott

NMott � , �3�

where N↑
Mott and N↓

Mott are the numbers of the up- and down-
spin particles participating the Mott core, respectively, and
NMott is the number of the lattice sites occupied by the Mott
core. Thus, one finds why the minority profile shows Wigner-
crystal-type ones, e.g., 2kF=�
1− �56−4� /60�=2��4 /60
in Fig. 2�f� and 2kF=�
1− �50−10� /60�=2��10 /60 in Fig.
3�a�, where the Mott phase covers 60 sites �NMott=60�,
N↑

Mott=N↑−10 �ten majority particles contribute to make the
metallic wings� and N↓

Mott=N↓ as seen in Figs. 3�a� and 3�f�.
These profiles are really confirmed by the DMRG calculation
of 60-site Heisenberg chain model in a magnetic field with
the open boundary condition, e.g., compare Fig. 3�a� with
Fig. 3�b�. This result clearly demonstrates that the imbal-
anced Mott phases in the trapped Fermi lattice systems are
equivalent with the effective interacting spin model under
magnetic field.

Let us compare the spin-density distributions of the Mott
core with ones of the Heisenberg model in more details. For
this purpose, we evaluate the Fourier component ns�k� of the
spin-density distributions ns�i�
=n↑�i�−n↓�i�� in a central
range �from i=31 to 90, i.e., L=60� shown in Figs. 3�a� and
3�b�. Figure 4 shows k	���� / �L+1� ��=1,2 , . . . ,L� vs
ns�k�. In these figures, one can find that a main peak charac-
terizing the SDW structure �e.g., �=21� and other profiles
almost coincide between both cases. This result indicates that
the Mott phases confined inside the harmonic trap can be
well described by the effective Heisenberg model with the
open boundary condition.

We further decrease the population imbalance P, i.e., in-
crease the number of the minority atoms. Then, the results,
e.g., Fig. 3�c�, reveal that the SDW periodicity is reduced
according to 2kF=��1− m̄�. We also note that by further im-

balance decrease, in addition to the SDW spin configuration,
another modulation structure with a wavelength being much
longer than the lattice constant appears 
see Fig. 3�e��.
This is regarded to emerge as a boundary effect since the
incommensuration of 2kF=��1− m̄� with the lattice becomes
visible, i.e., a beating modulation whose periodicity given
by �m̄ is exposed. For example, 2kF=�
1− �33−27� /60�
=��1−6 /60� in Fig. 3�e�, where it is noted that both the
majority �five particles� and the minority �five particles�
equally contribute to the metallic wing. See another case,
2kF=�
1− �31−29� /60�=��1−2 /60� in Fig. 5�f�, where five
majority and five minority particles also participate the me-
tallic wing similar to Fig. 3�e�. As shown in Figs. 3�d� and
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FIG. 3. �Color online� The profile changes in the Hubbard
model �2� with decreasing the population imbalance ratio at U / t
=8 and V / t=20. In the fixed total particle number NF=70, �a� N↑
=60, �c� 46, and �e� 38. The spin densities in the 60-site Heisenberg
chain with the open boundary condition in the external magnetic
field given by Eq. �1� are plotted with �b� g�BHext /J=0.90, �d�
0.47, and �f� 0.15.

Heisenberg
(gµBHext/J = 0.90)

Hubbard
(N↑ = 60, N↓ = 10)

n
s(

k
)

5.0
4.0
3.0
2.0
1.0

0
0 10 20 30 40 50 60

k/[π/(L + 1)]

FIG. 4. �Color online� The comparison of k vs the Fourier-
transformed spin density ns�k� for Figs. 3�a� and 3�b�, i.e., the
trapped Hubbard model �2� and the Heisenberg model �1� with the
open boundary condition, in which k	���� / �L+1� ��=1,2 , . . .�,
where L=60. In the case of the trapped Hubbard model, only the
central core region is used for the Fourier transformation.
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FIG. 5. �Color online� The trap-potential strength V depen-
dences of profiles of the particle density ntot�i�
=n↑�i�+n↓�i�� for
N↑=36 and N↓=34 in �a� U / t=4 with two slice pictures at �b�
V / t=12 and �c� 20 and �d� U / t=8 with the same ones at �e� V / t
=12 and �f� 20.
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3�f�, the change in the spin structure seen in Figs. 3�c� and
3�e� in Hubbard model �2� can be also well reproduced by
decreasing the strength of the magnetic field in the effective
model �1�. One finds that even the beating modulation due to
the boundary effect is also reproduced.

Let us turn to further small imbalance cases close to the
balanced one. The upper and lower panels of Fig. 5 show
V / t-dependent profiles in which the population ratio is 36:34
in strong and weak U / t, respectively. The profile in the weak
interaction shows that the Mott insulator core is broken about
above V / t=12 and the almost antiferromagnetic staggered
profile is lost in the broken region as shown in Fig. 5�c�. The
loss of the staggered structure is also observed in the
periphery14 around the Mott core as seen in Fig. 5�b� 
see
Fig. 6�a� for another case�. These results clearly reflect that
the staggered profile, i.e., the SDW phase, is formed only by
the spin degree of freedom. The staggered profile diminishes
in the metallic region in which the charge degree of freedom

is alive. In addition, inside the Mott core, another long
modulation is also observed in both the weak- and strong-
interaction cases as seen in Figs. 5�b� and 5�f�. In order to
check the size dependence of this modulation, we examine
the profiles by simply increasing both the lattice sites and the
number of total atoms while keeping the population imbal-
ance ratio a constant. The modulation and its wave periodic-
ity are found to be almost size independent within the range
as seen in Figs. 6�a�–6�d�. These results indicate that such a
modulation is clearly observable in 1D atomic Fermi gases
loaded on optical lattices. In addition, we note that the effec-
tive Heisenberg model with the open boundary condition can
reproduce these results.

We investigated the repulsively interacting polarized 1D
Hubbard model with harmonic confinement potentials by us-
ing the DMRG method. Inside the core phase �where the site
density equals to the unit� emerged universally for arbitrary
P, we found that its spin structure is described by the anti-
ferromagnetic Heisenberg model in magnetic field. This
equivalence was confirmed by DMRG calculations for both
the original and effective models. We suggest that the repul-
sively interacting polarized trapped lattice fermion systems
offer various playgrounds of not only the Hubbard type but
also the interacting localized-spin one. This idea may have
an impact on studies of the magnetism in the solid-state
physics.
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FIG. 6. �Color online� The site number N and the total atom
number NF dependences of the atom profiles with keeping the im-
balance ratio for �a� N↑=22 and N=60, �b� N↑=44 and N=120, �c�
N↑=66 and N=180, and �d� N↑=88 and N=240. In these cases,
U / t=20 and V / t=6.
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